Tribological characterization of a biocompatible thin film of UHMWPE on Ti6Al4V and the effects of PFPE as top lubricating layer.

نویسندگان

  • Bharat Panjwani
  • Nalam Satyanarayana
  • Sujeet K Sinha
چکیده

Ultra-high molecular weight polyethylene (UHMWPE) thin film was coated onto Ti6Al4V alloy specimens using dip coating method. Tribological performance of this coating (thickness of 19.6 ± 2.0 μm) was evaluated using 4 mm diameter Si(3)N(4) ball counterface in a ball-on-disk tribometer. Tests were carried out for different normal loads (0.5, 1.0, 2.0 and 4.0 N) and rotational speeds of the disk (200 and 400 rpm). UHMWPE coating formed in this study exhibits high hydrophobicity with water contact angle of 135.5 ± 3.3° and meets the requirements of cytotoxicity test using the ISO 10993-5 elution method. This coating shows low coefficient of friction (0.15) and high wear durability (>96,000 cycles) for the tested conditions. PFPE overcoat on UHMWPE has further increased the wear durability of UHMWPE coating as evaluated at even higher rotational speed of 1000 rpm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Poly(ether-6-block amide)/PVC Thin Film Composite Membrane for CO2 Separation: Effect of Top Layer Thickness and Operating Parameters

In this work, novel thin film composite membranes (TFCs) of poly (ether-6-block amide) (Pebax-1657) on a polyvinyl chloride (PVC) ultrafiltration membrane as support were prepared using inclined coating method for CO2 separation. Investigating the effects of top selective layer thickness formed by controlling the coating angle (15-60°) and polymer solution concentration (5-10 wt.%), ...

متن کامل

Potential of improving tribological performance of UHMWPE by engineering the Ti6Al4V counterfaces

Recently, some novel surface engineering techniques have been developed, which may be used for extending lifetime of artificial joints; however, the full potential will not be realised until the tribological behaviour of surface engineered bio-medical materials has been fully characterised. In the present investigation, a pin-on-disc tribometer has been used to evaluate the tribological respons...

متن کامل

Preparation and Characterization of Hydroxyapatite Coating on Ti6Al4V Cylinders by Combination of Alkali-Heat Treatments and Biomimetic Method

Biomimetic method was used to apply hydroxyapatite (HA) coating onto Ti6Al4V cylinders. This process is a physicochemical method in which a substrate is soaked in a solution simulating the physiological conditions, for a period of time enough to form a desirable layer of the calcium phosphate on the substrate. In the present study, specimens were soaked in 5, 10 M solutions of NaOH at temperatu...

متن کامل

Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires

In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...

متن کامل

Investigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation

The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR  is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the mechanical behavior of biomedical materials

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 2011